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Abstract. Matrix fixed-point iterations zn+1 = ψ(zn) defined by a rational function ψ are
considered. For these iterations a new proof is given that matrix convergence is essentially reduced
to scalar convergence. It is shown that the principal Padé family of iterations for the matrix sign
function and the matrix square root is a special case of a family of rational iterations due to Ernst
Schröder. This characterization provides a family of iterations for the matrix pth root which preserve
the structure of a group of automorphisms associated with a bilinear or a sesquilinear form. The first
iteration in that family is the Halley method for which a convergence result is proved. Finally, new
algorithms for the matrix pth root based on the Newton and Halley iterations are designed using the
idea of the Schur–Newton method of Guo and Higham.
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1. Introduction. The study of rational iterations, which have the form xk+1 =
ϕ(xk), where ϕ(z) is a rational function, is a topic of great interest in computation,
in particular for the design and analysis of root-finding algorithms. The local con-
vergence at a fixed point z∗, such that z∗ = ϕ(z∗), is related to the properties of the
derivatives of ϕ at z∗. A study of the global convergence is very difficult: the sets of
initial values for which the sequence generated by a rational iteration converges to a
fixed point are bounded by the so-called Julia sets which in most cases are fractals
[1].

The generalization to the matrix case appears in the study of matrix equations
and in the computation of matrix functions [9]. It raises problems somehow new: it
is not straightforward how to define a rational matrix iteration, there can be infinite
fixed points, the lack of commutativity in finite arithmetic can have effects on the
convergence, and so on.

In this paper we provide a general convergence result for rational matrix iterations,
then we prove some properties of specific classes of rational iterations.

General results concern the case where the iterates are rational functions of a
matrix A, say sk(A). We prove that the uniform convergence of sk(z) on a compact
neighborhood of the spectrum of A implies the matrix convergence, then we show
that if the iteration is of the type xk+1 = ϕ(xk), where ϕ is a rational function, then
the pointwise convergence of sk(λ) to attractive fixed points for each eigenvalue λ of
A, implies the uniform convergence on a compact neighborhood of the spectrum of A
and thus the matrix convergence. This extends in part a result of Higham [9, Thm.
4.15].

Concerning specific classes, we first consider the principal Padé family introduced
in [17] and discussed in [8, 10, 11, 4]. We prove that the family can be obtained by
the König root-finding method applied to the polynomial x2 − 1, which goes back to
a work of Schröder in 1870 [20]. Second, using the characterization given above, we
extend to the König family for the polynomial xp − 1 a result of Higham, Mackey,
Mackey and Tisseur [10] about the property of a part of the principal Padé family
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of preserving the structure of group of automorphisms associated with a bilinear or
a sesquilinear form. Third, we show that the Halley method, that belongs to the
König family, for the computation of the principal pth root of a matrix, preserves the
structure described above and we prove a result on the convergence of that method.
Finally, we show that the idea of the Schur-Newton method proposed by Guo and
Higham in [6] for the inverse Newton iteration for the computation of the principal
pth root of a matrix, can be applied to the direct Newton iteration and to the Halley
method, providing new algorithms with good numerical properties.

We recall that the principal pth root of a matrix A having no nonpositive real
eigenvalues is the unique solution X of the matrix equation Xp − A = 0, such that
the eigenvalues of X have argument less in modulus than π/p.

The paper is organized as follows: in Section 2 we define the class of pure ra-
tional matrix iterations and we discuss their convergence; in Section 3 we show the
equivalence between the principal Padé iterations and the König iterations for x2−1;
in Section 4 we generate a König family of matrix iterations preserving the structure
of group of automorphisms; in Sections 5 and 6 we prove convergence results for the
Newton and Halley method and we extend the idea of the Schur-Newton method of
Guo and Higham to them.

2. Pure rational matrix iterations. Given a rational function ϕ, the iteration{
z0 ∈ C,
zk+1 = ϕ(zk), k = 0, 1, 2, . . . (2.1)

is called a rational iteration. The function ϕ can have poles, so that the sequence
is not necessarily well defined for each z0. We use the notation ϕ◦k to denote the
kth iterate of the function ϕ, i.e., ϕ◦1 = ϕ and ϕ◦k+1 = ϕ ◦ ϕ◦k. A fixed point z∗
of (2.1) is such that ϕ(z∗) = z∗ and is said to be attractive if |ϕ′(z∗)| < 1. For an
attractive fixed point z∗, the basin of attraction is the set B = {z0 ∈ C : zk → z∗};
the immediate basin is the connected component of B which contains z∗.

We state an useful lemma on the basin of attraction which is a special case of
Theorem 6.3.1 of [1].

Lemma 2.1. Let z∗ be an attractive fixed point of iteration (2.1). The sequence
ϕ◦k(z) converges locally uniformly to z∗ for each z0 belonging to the basin of z∗. In
other words, z0 has a neighborhood in which ϕ◦k converges uniformly to z∗.

Proof. Since |ϕ′(z∗)| < 1, there exists a closed disk D centered at z∗ and such
that |ϕ(z)− z∗| 6 M |z − z∗|, for a positive constant M < 1 and for each z ∈ D, and
thus ϕ◦k converges uniformly on the compact sets of D.

Let z0 belong to the basin of attraction of z∗. There exists m such that ϕ◦m(z0)
belongs to the interior of D. Since ϕ◦m is continuous, there exists a compact neigh-
borhood K of z0 such that ϕ◦m(z) is a compact set fully contained in the interior of
D and thus ϕ◦k(z) converges uniformly to z∗ for each z ∈ K.

In the matrix case, a formula like (2.1) would give an iteration of the form{
Z0 ∈ Cn×n,
Zk+1 = ϕ(Zk), k = 0, 1, 2, . . . (2.2)

where ϕ(z) is a rational function and ϕ(Z), where Z is a square matrix, is defined
by substituting Z for z and replacing scalar numbers by multiples of the identity,
and arithmetic operations by matrix operations. That procedure leads to the usual
definition of function of a matrix [12, 5, 9]. We call an iteration defined by a function,
as in (2.2), pure rational matrix iteration.
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The class of pure rational matrix iterations is not suitable to approximate generic
matrix functions, since, as we will explain in Remark 2.5 there hold strong conditions
on the limits of such sequences.

A larger class of iterations than the pure rational matrix iterations can be studied
with similar techniques. An iteration in this larger class can be written in the form{

Z0 = p(A),
Zk+1 = ψ(Zk, A), k = 0, 1, 2, . . . (2.3)

where A is a square matrix, ψ = ψ(t, z) is a two-variable rational function and p is
a polynomial. In that case, for each A, the sequence Zk defines the same sequence
of rational functions sk(z) such that sk(A) = ψ(sk−1(A), A) = Zk and s0(A) = p(A).
That class contains the pure rational matrix iterations as a special case, if p is the
identity function and the formula for ψ does not contain A.

Consider an iteration of the class (2.3) described above. Let Zk be the kth iterate,
so that Zk = sk(A), with sk(z) being a rational function. Using the Jordan canonical
form of A, say M−1AM = J1⊕· · ·⊕Jr, one has M−1ZkM = sk(J1)⊕· · ·⊕sk(Jr) for
each k. Therefore, by means of similarity M , the iteration can be uncoupled into r
iterations involving only functions of the Jordan blocks. The study of the convergence
is thus restricted to the case in which A is a Jordan block of arbitrary size for the
eigenvalue λ, which will be denoted by J .

Moreover, in view of the formula for a function of a Jordan block [5, Thm 11.1.1],

f(J) =


f(λ) f ′(λ) . . . f(k−1)(λ)

(k−1)!

f(λ)
. . .

...
. . . f ′(λ)

© f(λ)

 , (2.4)

each of the iterates is upper triangular.
A question arises naturally: if the sequence sk(λ), with s0(λ) = p(λ), converges

for each eigenvalue of A, what can be said about the convergence of sk(A)? The
following easy example shows that in general scalar convergence does not imply matrix
convergence.

Example 2.2. Consider the rational iteration zk+1 = ϕ(zk) where ϕ(z) = z2.
The sequence ϕ◦k(1) converges to 1, but it fails to converge uniformly on any neigh-
borhood of the point 1. Consider the matrix iteration Zk+1 = Z2

k , and the starting

point Z0 =
[

1 1
0 1

]
; the iterates are Zk =

[
1 2k

0 1

]
and the sequence fails to con-

verge. For this iteration and Z0 being a Jordan block of size n for the eigenvalue 1,
there is matrix convergence only for n = 1, that is, in the scalar case. �

A sufficient condition for the convergence of the matrix sequence, given the scalar
convergence, is stated in Lemma 2.3, in which the notation ‖f(z)‖K = supx∈K |f(x)|
is used for a function f defined on a compact set K. This approach generalizes a proof
of matrix convergence in [15]. A different approach for the matrix convergence has
been used in [17] and generalized in [9, Thm. 4.15], where it is proved that the matrix
convergence follows from the scalar convergence of the eigenvalues to attracting fixed
points.

Lemma 2.3. If sk(z) is a sequence of rational functions that converges uniformly
in a compact neighborhood K of λ to the function f(z), then sk(J) converges to f(J),
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where J is a Jordan block of arbitrary size n relative to the eigenvalue λ. Moreover,
there exists a function c = c(n), independent of k, such that

‖sk(J)− f(J)‖∞ 6 c‖sk(z)− f(z)‖K . (2.5)

Proof. The function f is holomorphic on K since it is the uniform limit on a
compact set of holomorphic functions.

From formula (2.4), the matrix sequence converges if the sequence sk(z) and
its derivatives up to the order n − 1 converge. Consider a small circle γ of radius
R, centered at λ and fully contained in K. Using the Cauchy formula, for p =
0, 1, . . . , n− 1, it holds that∣∣∣∣∣s(p)

k (λ)
p!

− f (p)(λ)
p!

∣∣∣∣∣ =
∣∣∣∣ 1
2πi

∮
γ

sk(z)− f(z)
(z − λ)p+1

dz

∣∣∣∣ 6 1
Rp

‖sk(z)− f(z)‖K .

The previous relation provides the convergence of the sequence sk(J) to f(J) since
the latter term tends to zero as k tends to ∞ by the uniform convergence assumption.
It provides also the proof of (2.5), since from formula (2.4) it follows that

‖sk(J)− f(J)‖∞ =
n−1∑
p=0

∣∣∣∣∣s(p)
k (λ)
p!

− f (p)(λ)
p!

∣∣∣∣∣ 6 ‖sk(z)− f(z)‖K

n−1∑
p=0

1
Rp

. (2.6)

In summary, if the sequence sk(z) converges uniformly on a compact neighborhood
of the spectrum of A, then the sequence sk(A) converges and formula (2.6) can be
used to provide an upper bound for the convergence of the matrix sequence. If the
scalar convergence is not uniform, then the matrix iteration may fail to converge, as
Example 2.2 shows.

We have turned the problem from matrix convergence to uniform scalar conver-
gence on a compact neighborhood of the spectrum. This does not seem at first sight
an advantage, but its benefit is clear in the case of pure rational iterations; in fact,
Lemma 2.1 shows that if the sequence sk(λ) converges, for each eigenvalue λ of A, to
an attractive fixed point λ∗, then the sequence sk(z) converges uniformly to λ∗ on a
neighborhood of λ. We have the following result.

Theorem 2.4. Let Zk+1 = ϕ(Zk) be a pure rational matrix iteration. If for
each eigenvalue λ of Z0 the scalar sequence zk+1 = ϕ(zk), z0 = λ, converges to an
attractive fixed point λ∗, then there exists a locally constant function f(z) such that for
each initial value Z in a neighborhood of Z0 the matrix iteration converges to f(Z).
Moreover, f(Z) is diagonalizable.

Proof. Lemma 2.1 guarantees that the scalar iteration converges uniformly in
a compact neighborhood K of spectrum of Z0 to a locally constant function f(z).
Lemma 2.3 provides the matrix convergence for the Jordan blocks relative to eigen-
values belonging to the interior of K. Since the eigenvalues of a matrix are continuous
functions of the entries, there exists a neighborhood V of Z0 in the space of square
matrices such that for each matrix Z of V , the eigenvalues of Z belong to the interior
of K, so the matrix iteration converges to f(Z).

The diagonalizability follows from the fact that f is locally constant and thus its
derivatives are 0: by formula (2.4) f(J) is a diagonal matrix for each Jordan block J .
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Remark 2.5. Theorem 2.4 states that the limit of a pure rational matrix iteration
is a (scalar) locally constant function of the initial value and it is diagonalizable,
provided the convergence of the scalar sequence on the eigenvalues of Z0 is to attractive
fixed points (a scalar locally constant function need not be locally constant if applied
to matrices, consider, for instance, the matrix sign function). A consequence is that
only (scalar) locally constant functions can be the limit of a pure rational matrix
iteration, which explains why in the literature the sole matrix functions computed
using pure rational matrix iterations are the matrix sign function and the matrix
sector function, which are (scalar) locally constant.

On the other hand, Theorem 2.4 shows that a function which is not (scalar) locally
constant cannot be the limit of a pure rational matrix iteration, thus there is no hope
to find, for instance, a pure rational matrix iteration converging to the matrix pth
root, logarithm or exponential.

We note that Theorem 2.4 implies that a matrix function defined as the limit of
a pure rational iteration is diagonalizable, which in particular gives another proof of
the diagonalizability of the matrix sign function.

Remark 2.6. A convergence result for iterations of the type (2.3) is given by
Higham [9, Thm. 4.15], generalizing a result for the matrix sign function in [17, Lem.
5.1]. His result guarantees matrix convergence if the scalar eigenvalue sequences
converge to attractive fixed points. When [9, Thm. 4.15], is specialized to the case of
pure rational matrix iterations it gives a result similar to, but weaker than, Theorem
2.4. Theorem 2.4 together with Lemma 2.3 has the advantage of specifying the limit
to which the matrix sequence converges as a matrix function, provides a bound for
the matrix convergence, and can be further extended to the case |ϕ′(λ∗)| = 1 using,
for instance, the Leau-Fatou theorem [1].

3. Equivalence between the König family and the principal Padé it-
erations family. In the paper [17] Kenney and Laub derive a family of rational
iterations for the computation of the matrix sign function. The derivation is based
on the theory of Padé approximations and exploits the relation

sign(z) =
z√
z2

=
z√

1− (1− z2)
=

z√
1− ξ

,

where ξ = 1− x2. They consider the approximants of the function

h(ξ) = (1− ξ)−1/2,

which are well known.
Given pmn(ξ)/qmn(ξ), the (m,n) Padé approximant to h, the recurrence

xk+1 = fmn(xk) = xk
pmn(1− x2

k)
qmn(1− x2

k)

defines a family of iterations for the matrix sign function is obtained.
The iterations with m = n− 1 and m = n are globally convergent and have been

called principal Padé iterations [9]. For these values of m and n one can define

gr(x) = fmn(x), for r = m+ n+ 1, (3.1)

for which we have the following result [17].
Theorem 3.1. For the function (3.1) it holds that:
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1. for each nonimaginary x0, the iteration xk+1 = gr(xk) is convergent to
sign(x0), with order of convergence r;

2. gr(x) =
(1 + x)r − (1− x)r

(1 + x)r + (1− x)r
.

Higham [9] noticed that these families were essentially derived by Howland [14],
though for even r the iteration functions of Howland are the reciprocal of those of
Kenney and Laub.

In fact, the family of principal Padé iterations is a particular case of iterations
going back to Schröder in his monumental paper of 1870 [20] (an English translation
is available in [21]). This family was studied by Householder [13] and many other
authors, who called it König family [3] or basic family [16].

The König method of order σ, applied to the function f , is defined by the formula
[3]

Kf,σ(z) = z + (σ − 1)
(1/f(z))(σ−2)

(1/f(z))(σ−1)
, (3.2)

where (1/f)(k) is the kth derivative of 1/f . It can be proved that the method converges
to simple roots of f with order at least σ. For σ = 2 the König method is the Newton
method, while for σ = 3 it is the so-called Halley method.

If f is a polynomial, then Kf,σ is a rational function. Let us define Kp,σ as the
König family applied to the polynomial f = xp − 1.

Theorem 3.2. For the König rational functions relative to the polynomial x2−1

it holds that K2,r(x) =
(x+ 1)r + (x− 1)r

(x+ 1)r − (x− 1)r
. Thus, K2,r coincides with gr of (3.1) for

odd r and with the reciprocal of gr for even r.
Proof. From

dn

dxn

(
1

x2 − 1

)
=

1
2
dn

dxn

(
1

x− 1
− 1
x+ 1

)
=

(−1)nn!
2

(
1

(x− 1)n+1
− 1

(x+ 1)n+1

)
=

(−1)nn!
2

(
(x+ 1)n+1 − (x− 1)n+1

(x2 − 1)n+1

)
,

it follows that

K2,r(x) = x− (x2 − 1)
(x+ 1)r−1 − (x− 1)r−1

(x+ 1)r − (x− 1)r
=

(x+ 1)r + (x− 1)r

(x+ 1)r − (x− 1)r
.

4. Structure-preserving algorithms in the König family. It has been proved
in [11, Thm. 3.13] that an iteration of the form

z
q(z)

rev q(z)
, (4.1)

where rev q(z) = zdq(1/z), for a real polynomial q(z) of degree d, preserves the struc-
ture of group of automorphisms associated with

• a bilinear form on Rn or Cn;
• a sesquilinear form on Cn.



A FAMILY OF RATIONAL ITERATIONS FOR THE MATRIX PTH ROOT 7

To ease the notation we call structure-preserving an iteration with the form (4.1),
recalling that the rational functions preserving bilinear or sesquilinear forms (fully
characterized in [11, Thm. 3.13]) are more general.

The principal Padé iterations and, in view of Theorem 3.2, the K2,σ iterations,
for odd σ, are iterations for the matrix sign function which are structure-preserving
[11]; this is a case of a more general theorem.

Theorem 4.1. If n ≡ 3 (mod p), then the function Kp,n, namely the König
method for the polynomial xp − 1, has the form

z
q(zp)

rev q(zp)
, (4.2)

where q is a real polynomial, so in particular it is structure-preserving.
Proof. The proof is obtained by deriving a formula for the derivatives of 1/(xp−1)

and, from it, an explicit elementary formula for the König function from which we
deduce the theorem. Let p > 3, the case p = 2 follows easily from Theorem 3.2.

Let ω = cos(2π/p)+ i sin(2π/p) and ϕ(x) = (xp−1)/(x−1) =
∑p−1

k=0 x
k. Observe

that ϕ(ωk) = 0 for k 6≡ 0 (mod p).
It holds that

1
xp − 1

=
1
p

p−1∑
k=0

ωk

x− ωk
,

in fact,

p−1∑
k=0

ωk

x− ωk
=

1
xp − 1

p−1∑
k=0

1
ω̄k

xp − 1
x− ωk

=
1

xp − 1

p−1∑
k=0

(ω̄kx)p − 1
ω̄kx− 1

=
1

xp − 1

p−1∑
k=0

ϕ(ω̄kx) =
1

xp − 1

p−1∑
k=0

p−1∑
r=0

(ω̄kx)r =
1

xp − 1

p−1∑
r=0

xr

p−1∑
k=0

ω̄kr =
p

xp − 1
.

Now,

dn

dxn

(
1

xp − 1

)
=

1
p

p−1∑
k=0

dn

dxn

ωk

x− ωk
=

(−1)nn!
p

p−1∑
k=0

ωk

(x− ωk)n+1

=
(−1)nn!

p(xp − 1)n+1

p−1∑
k=0

ω̄knϕn+1(ω̄kx) =
(−1)nn!

p(xp − 1)n+1

p−1∑
k=0

ωknϕn+1(ωkx),

and, defining ψn(x) =
1
p

p−1∑
k=0

ωk(n−1)ϕn(ωkx), yields the explicit formula

Kp,n = x− (xp − 1)
ψn−1

ψn
=
xψn − (xp − 1)ψn−1

ψn
.

The denominator of Kp,n, namely ψn(x), is formed by the terms of ϕn(x) in which
the exponent of x is congruent to (1− n) modulo p, in fact, if ϕn(x) =

∑
arx

r, then

ψn(x) =
1
p

p−1∑
k=0

ωk(n−1)
∑

r

arω
krxr =

1
p

∑
r

(
arx

r

p−1∑
k=0

ωk(n+r−1)

)
=

∑
r≡1−n

arx
r.
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The numerator of Kp,n, namely xψn(x)− (xp − 1)ψn−1(x), is formed by the terms of
ϕn(x) in which the exponent of x is congruent to (2− n) modulo p, in fact

xψn(x)−(xp−1)ψn−1(x) =
1
p

p−1∑
k=0

(
ωk(n−1)xϕn(ωkx)− ωk(n−2)(xp − 1)ϕn−1(ωkx)

)
=

1
p

p−1∑
k=0

(
ωk(n−1)xϕn(ωkx)− ωk(n−2)(ωkx− 1)ϕn(ωkx)

)
=

1
p

p−1∑
k=0

ωk(n−2)ϕn(ωkx)

=
1
p

p−1∑
k=0

ωk(n−2)
∑

r

arω
krxr =

1
p

∑
r

(
arx

r

p−1∑
k=0

ωk(n+r−2)

)
=

∑
r≡2−n

arx
r,

where we have used the identity xp − 1 = (ωkx− 1)ϕ(ωkx), for any k.
Let aα1 , . . . , aαν

be the coefficients of ϕn(x) relative to exponents congruent to
1−n modulo p, and let aβ1 , . . . , aβµ

be the coefficients of ϕn(x) relative to exponents
congruent to 2− n modulo p, so that

Kp,n =
aβ1x

β1 + · · ·+ aβµ
xβµ

aα1x
α1 + · · ·+ aαν

xαν
.

To conclude the proof, it is enough to prove that, for n ≡ 3 (mod p), it holds that
µ = ν and aα1 = aβµ

, aα2 = aβµ−1 , . . . , aαν
= aβ1 .

Let N = degϕn(x) = np− n. To prove the equality µ = ν observe that µ and ν
are the number of solutions of the congruence r ≡ 1−n (mod p) and r ≡ 2−n (mod p),
respectively, such that 0 6 r 6 N . For n ≡ 3 (mod p) there exists an integer γ such
that N = γp − 3, thus the number of solutions of the two congruences r ≡ 1 − n ≡
−2 (mod p) and r ≡ 2− n ≡ −1 (mod p) such that 0 6 r 6 N is the same.

Observe that since N = np− n, then βµ = N + 2− p and observe that ϕn(x) =
revϕn(x), namely ar = aN−r for each r = 0, 1, . . . . For n ≡ 3 (mod p), it holds that
α1 = p− 2 and thus aα1 = ap−2 = aN+2−p = aβµ .

The equalities aαi+1 = aβµ−i for i = 1, 2, . . ., follow from the fact that if n ≡ 3
(mod p), then αi+1 = (i+ 1)p− 2 = N − (N + 2− p− ip) = N − βµ−i.

Simplifying the common factors gives the required form for Kp,n.
By the properties of the König method [3], the iteration zk+1 = Kp,n(zk) con-

verges locally, with order of convergence at least n, to the roots of the polynomial
xp − 1. It is easy to see, by an induction argument, that the iteration

xk+1 = ζKp,n(ζ−1xk), (4.3)

where ζ is any pth root of the nonzero scalar a, for x0 = ζz0, is such that xk = ζzk

and thus converges locally to the roots of xp − a = 0.
Iteration (4.3) does not seem effective for computing the pth roots of a, since it

uses ζ, but for n ≡ 3 (mod p), in view of Theorem 4.1, the iteration for xk has the
form

xk+1 = xk
q(a−1xp

k)
rev q(a−1xp

k)
= xk

q̂(xp
k)

rev q̂(xp
k)
, (4.4)

where q̂ is obtained multiplying q by a suitable power of a. In this way, an effective
iteration is obtained to approximate with a high precision the pth roots of a given
complex number.
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A difficulty in the use of iteration (4.4) is the global convergence. We will not
investigate further the global convergence of (4.4), but in Section 5 we will give a
convergence proof for the case n = 3 which is a structure-preserving iteration for each
p, in view of Theorem 4.1.

Remark 4.2. Theorem 4.1 has a perhaps surprising application to the theory
of root-finding algorithms. Following McMullen [19], a rational iterative root-finding
algorithm is said generally convergent if it converges to a root for almost every initial
guess and for almost every polynomial (where the Lebesgue measure on the complex
plane and on the space of coefficients is considered).

It is known that the Newton method is generally convergent for quadratic poly-
nomials, but not for cubics. In fact, the Newton iteration for the polynomial p(z) =
z3−2z+2 does not converge to any root for initial values in a suitable set of measure
greater than zero.

McMullen has constructed in [19] a generally convergent algorithm for cubic poly-
nomials and has proved that there does not exist a generally convergent algorithm for
polynomials of degree greater than three.

Using the results of McMullen, Hawkins has proved that any generally convergent
root-finding algorithm is generated by a root-finding algorithm for the polynomial
x3 − 1 of the form (4.2) [7]. Thus, Theorem 4.1 could be used to construct generally
convergent algorithms for cubic polynomial of arbitrarily high order of convergence.

5. Nice properties of the Halley method. The König method of order 3 is
the so-called Halley method which, for the equation xp − 1 = 0, is

xk+1 = xk
(p− 1)xp

k + (p+ 1)
(p+ 1)xp

k + (p− 1)
, x0 ∈ C. (5.1)

Here we considered a matrix generalization of the Halley method for computing the
principal pth root of a matrix A.

A very nice feature of the Halley method for the equation xp − 1 = 0 is that the
basin of attraction for the fixed point 1 is somewhat nicer than the one of the Newton
method (see Figure 5.1 for a comparison in the case p = 4). It has been proved [15]
that for the Newton method applied to the equation xp−1 = 0 the basin of attraction
for the fixed point 1 contains the set

T2p = {z ∈ C \ {0} : −π/(2p) < arg (z) < π/(2p), |z| > 1}, (5.2)

while for the Halley method there holds the following result.
Theorem 5.1. The immediate basin of attraction for the fixed point 1 of the

rational iteration (5.1) contains the sector

S2p = {z ∈ C \ {0} : −π/(2p) < arg (z) < π/(2p)}. (5.3)

Proof. Let us define

ϕ(z) =
(p− 1)zp + (p+ 1)
(p+ 1)zp + (p− 1)

,

iteration (5.1) can be written as zk+1 = zkϕ(zk). The sector S2p contains the fixed
point z = 1, is an open connected set and, by Lemma 5.2, if z ∈ S2p then zϕ(z) ∈ S2p.
Thus, the set S2p belongs to the immediate basin of the fixed point z = 1. In fact,
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Fig. 5.1. Comparison of the basins of attraction for the Newton method (left) and the Halley
method (right) for the equation x4 − 1 in the set [−2, 2] × [−2, 2] ⊂ C. The sets T2p of (5.2) and
S2p of (5.3) are highlighted.

given a rational iteration xk+1 = ψ(xk) of degree greater than 1, any connected
open set U such that ψ(U) ⊂ U and containing only a fixed point z∗ belongs to the
immediate basin of z∗ (compare [1, Thm. 4.2.5]).

Lemma 5.2. For each z ∈ S2p, it holds that | arg(zϕ(z))| 6 | arg(z)| and the
equality holds if and only if z is real.

Proof. If z is real then ϕ(z) is real. Let us consider the case arg(z) > 0; since
arg(zϕ(z)) = arg(z) + arg(ϕ(z)), it is enough to prove that

−2 arg(z) < arg(ϕ(z)) < 0. (5.4)

Removing real positive constants, it holds that

arg(ϕ(z)) = arg
(
((p− 1)zp + (p+ 1)) · ((p+ 1)z̄p + (p− 1))

)
.

Using the decomposition z = r(cosϑ+ i sinϑ), one has

arg(ϕ(z)) = arg
(
(p2 − 1)(|r|2p + 1) + 2(p2 + 1)rp cos(pϑ)− 4iprp sin(pϑ)

)
.

Applying the tangent trigonometric function to the inequalities (5.4) it is obtained
the equivalent

− sin(2ϑ)
cos(2ϑ)

<
−4prp sin(pϑ)

(p2 − 1)(r2p + 1) + 2(p2 + 1)rp cos(pϑ)
< 0. (5.5)

The latter inequality is evident from 0 < ϑ < π/(2p). The former need a bit more
work and can be rewritten as

(p2−1) sin(2ϑ)r2p+2
(
(p2+1) cos(pϑ) sin(2ϑ)−2p sin(pϑ) cos(2ϑ)

)
rp+(p2−1) sin(2ϑ) > 0,

(5.6)
and can be seen as a quadratic inequality on the variable x = rp. The quadratic
has the form γ(x) = ax2 + 2bx + a, where a = (p2 − 1) sin(2ϑ) and b = (p2 +
1) cos(pϑ) sin(2ϑ)− 2p sin(pϑ) cos(2ϑ). Since a > 0, the inequality γ(x) > 0 is true if
the equation γ(x) = 0 has no solution. Observe that if γ(x) = 0 then γ(1/x) = 0 and
then if γ(1) > 0 there exist no positive solution.
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Using the inequalities (ϑ−ϑ3/6) 6 sinϑ 6 ϑ for 0 < ϑ < π/p and sin((p−2)ϑ) =
sin(pϑ) cos(2ϑ)− sin(2ϑ) cos(pϑ), one can see that

1
2
γ(1) > (p2 − 1) sin(2ϑ)− 2p sin((p− 2)ϑ) > (p2 − 1)(2ϑ− 4

3
ϑ3)− 2p(p− 2)ϑ

=
2
3
ϑ
(
6p− 3− 2(p2 − 1)ϑ2)

)
,

the last expression is positive if ϑ2 6 6p−3
2p2−2 and this is true since ϑ 6 π/(2p).

It is worth giving a corollary of Theorem 5.1 which could be used for the compu-
tation of the scalar p-th root.

Corollary 5.3. Consider the Halley method for the equation xp − a = 0,

xk+1 = xk
(p− 1)xp

k + (p+ 1)a
(p+ 1)xp

k + (p− 1)a
, x0 ∈ C. (5.7)

The principal basin for the initial value x0 = 1 contains the set C> = {z ∈ C : Re z >
0}.

Theorem 2.4 guarantees the convergence of the pure matrix iteration

Yk+1 = Yk((p− 1)Y p
k + (p+ 1)I)((p+ 1)Y p

k + (p− 1)I)−1, (5.8)

to the identity matrix I, for each Y0 having eigenvalues in S2p; in particular, for
Y0 = A−1/p where A has eigenvalues in the open right half complex plane, which will
be denoted by C>. Iteration (5.8) is strictly related to

Xk+1 = Xk((p− 1)Xp
k + (p+ 1)A)((p+ 1)Xp

k + (p− 1)A)−1; (5.9)

in fact, if A has eigenvalues in C>, Y0 = A−1/p and X0 = I, then it can be shown
that Xk = YkA

1/p for each k (the proof follows by an induction argument and using
the fact that Xk and Yk are functions of A, so commute with A and A1/p).

Corollary 5.4. The sequence Xk obtained by iteration (5.9) with X0 = I
converges to A1/p for each A having eigenvalues in C>.

Moreover, for what we have proved in Section 4, iteration (5.8) is structure-
preserving. If A belongs to a group of automorphisms as in Section 4, so does A1/p,
thus, each of the iterates obtained by (5.9) belongs to that group.

Iteration (5.9) cannot be used directly to approximate the principal pth root. In
fact, using the same idea as in [15], one can prove that iteration (5.9) is not stable
in a neighborhood of A1/p, i.e., a perturbation on the value of Xk is amplified in the
following steps preventing the convergence in a finite arithmetic computation.

This problem can be overridden using another algorithm which provides the same
sequence but which is stable in a neighborhood of A1/p, for instance

X0 = I, N0 = A,
Xk+1 = Xk((p+ 1)I + (p− 1)Nk)−1((p− 1)I + (p+ 1)Nk),
Nk+1 = Nk

(
((p+ 1)I + (p− 1)Nk)−1((p− 1)I + (p+ 1)Nk)

)−p
.

(5.10)

where Nk → I and Xk → A1/p. If the pth power is computed using the binary
powering technique [5, Alg. 11.2.2], the computational cost of iteration (5.10) is
2(5 + ϑ log2 p)n3 arithmetic operations (ops) per step, where 1 6 ϑ 6 2.
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6. New algorithms for the matrix pth root. A family of iterations for com-
puting the principal pth root of a matrix A is

Xk+1 =
(p− 1)Xk +AX1−p

k

p
, (6.1)

which coincides with the Newton method for the equation Xp − A = 0, when the
latter is well defined and X0 commutes with A [22], this is the reason why iteration
(6.1) is referred, somehow improperly, as the Newton method.

In [22] it is proved that this iteration is not stable in a neighborhood of A1/p. A
stable variant, for X0 = I,

Y0 = I, N0 = A,

Yk+1 = Yk

(
(p− 1)I +Nk

p

)
,

Nk+1 =
(

(p− 1)I +Nk

p

)−p

Nk,

(6.2)

has been proposed in [15], where it has been proved that (Yk, Nk) converges quadrat-
ically to (A1/p, I) for each A having eigenvalues in the set

D = {z ∈ C : Re z > 0, |z| 6 1}. (6.3)

This leads to an algorithm for computing the principal pth root.
Algorithm 1 (A Newton method for A1/p [15]). Given A ∈ Cn×n with no

nonpositive real eigenvalues, an integer p > 2 and an algorithm for computing the
square root.

1. Compute B, the principal square root of A;
2. Set C = B/‖B‖ for a suitable norm. The eigenvalues of C belongs to the set
D of (6.3);

3. By means of iteration (6.2)
• If p is even, compute S = C2/p, the (p/2)th root of C and set X =
S‖B‖2/p;

• If p is odd, compute S = C1/p, the pth root of C and setX =
(
S‖B‖1/p

)2
.

Iteration (6.2) of Algorithm 1 has a computational cost of 2(3+ϑ log2 p)n3 ops per
step, where 1 6 ϑ 6 2. The initial square root can be obtained by forming the Schur
decomposition of A, without affecting the complexity order with respect to p. An
observation of Guo and Higham is that the Schur decomposition gives the eigenvalues
of A and that information is not exploited in Algorithm 1.

Since the number of steps to achieve the required accuracy in the numerical
computation depends on the localization of the eigenvalues of the matrix whose pth
root is required, a smarter preprocessing could reduce the number of steps needed for
the expensive iteration (6.2) (or other similar) to verify a suitable stopping criterion.
In order to give a better localization of the eigenvalues, one could perform a small
number of initial square roots without affecting the order of complexity of the overall
algorithm. Moreover, multiplying the preprocessed matrix by a scalar parameter
could further reduce the number of steps needed for convergence.

The Schur-Newton method, an algorithm of Guo and Higham [6], is based on these
ideas. The algorithm does not use iteration (6.2) but an iteration which generalizes
the scalar Newton method for the equation x−p− a = 0. The iteration, introduced in



A FAMILY OF RATIONAL ITERATIONS FOR THE MATRIX PTH ROOT 13

[2], is

Xk+1 =
1
p

(
(p+ 1)Xk −Xp+1

k A
)
, X0 = I, (6.4)

which converges to A−1/p, and for which in [6] is constructed a convergence region for
the eigenvalues of A: if the spectrum of A belongs to that region, then Xk → A−1/p.
From iteration (6.4) can be obtained a stable iteration [15, 18, 6]

Y0 =
1
c
I, N0 =

1
cp
A,

Yk+1 = Yk

(
(p+ 1)I −Nk

p

)
,

Nk+1 =
(

(p+ 1)I −Nk

p

)p

Nk,

(6.5)

such that Yk → A−1/p and Nk → I. Setting Xk = Y −1
k gives the iteration [6]

X0 = cI, N0 =
1
cp
A,

Xk+1 =
(

(p+ 1)I −Nk

p

)−1

Xk,

Nk+1 =
(

(p+ 1)I −Nk

p

)p

Nk,

(6.6)

for which Xk → A1/p. The computational costs of iterations (6.5) and (6.6) are
2(2 + ϑ log2 p)n3 and 2(3 + ϑ log2 p)n3 ops per step, respectively, where 1 6 ϑ 6 2.

Algorithm 2 (Schur-Newton algorithm for A1/p using (6.5) and (6.6) [6]). Given
A ∈ Cn×n with no nonpositive real eigenvalues, an integer p = 2k0q with k0 > 0 and
q odd.

1. Compute the Schur decomposition of A = QRQT ;
2. If q = 1 then k1 = k0 else choose k1 > k0 such that arg(λ1/2k1

i ) ∈ (−π/8, π/8)
for each i and |λ1/λn|1/2k1 6 2, where the eigenvalues of A are ordered
|λn| 6 · · · 6 |λ1|;

3. Compute B = R1/2k1 by taking the square root k1 times; if q = 1, then
X = QBQT , else continue;

4. Let µ1 = |λ1|1/2k1 , µn = |λn|1/2k1 ;

• If the λi are all real, if µ1 6= µn determine c =
(

α1/qµ1−µn

(α1/q−1)(p+1)

)1/q

with

α = µ1/µn, else c = µ
1/q
n ;

• If some λi is complex, then c =
(

µ1+µn

2

)1/q
;

5. Compute C = B1/q by (6.6), X = QC2k1−k0
QT (or compute C = B−1/q by

(6.5), X = Q(C2k1−k0 )−1QT ).
The initial square roots computation, in certain cases, may reduce dramatically

the number of steps needed by the iteration, but each square root in preprocessing
corresponds to a squaring at the final step of the algorithm. The cost of a square root
and a squaring is less than the cost of one step of the iteration, but a large number of
initial square roots may result in a waste of computation if there is no saving in the
number of iteration steps.
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A little extension of the region of convergence D of (6.3) allows one to use the
ideas of Algorithm 2 also for iteration (6.2). The proof will be given in Section 6.1
and is based on the proof of Theorem 2.3 of [15].

Theorem 6.1. The immediate basin of attraction for the fixed point 1 of the
iteration

xk+1 =
(p− 1)xk + x1−p

k

p
, (6.7)

contains the set

E = {z ∈ C : |z| > 1
21/p

, | arg(z)| < π/(4p)}.

Observe that iteration (6.1) with X0 = I converges to A1/p if and only if the
iteration

Xk+1 =
(p− 1)Xk +X1−p

k

p
, X0 = A−1/p, (6.8)

converges to the identity matrix. This fact and Theorem 2.4 give the following result.
Corollary 6.2. Iteration (6.1) converges for each A having eigenvalues in

D+ = {z ∈ C : |z| 6 2, | arg(z)| < π/4}. (6.9)

Corollary 6.2 leads to an analog of Algorithm 2 using iteration (6.2).
Algorithm 3 (Schur-Newton algorithm using (6.2)). Given A ∈ Cn×n with no

nonpositive real eigenvalues, an integer p = 2k0q with k0 > 0 and q odd.
1. Compute the Schur decomposition of A = QRQT ;
2. If q = 1 then k1 = k0 else choose k1 > k0 such that there exists a positive

number s such that for each eigenvalue λ of A, sλ1/2k1 ∈ D, where D is the
disk of center 6/5 and radius 3/4.

3. Compute B = R1/2k1 by taking the square root k1 times; if q = 1, then
X = QBQT , else continue;

4. Compute C = (B/s)1/q by (6.2), X = Q(Cs1/q)2
k1−k0

QT .
The convergence of Algorithm 3 is guaranteed by Corollary 6.2, in fact iteration

(6.2) is applied to a matrix having eigenvalues in the set D which is a subset of D+

of (6.9). The set D is chosen heuristically in order to need at most 5 steps of Newton
iteration in the scalar case.

Step 2 of Algorithm 3 can be done in an inexpensive way. For m > k0 and for
each eigenvalue λ of A, one looks for an interval [t1(λ), t2(λ)] such that t1(λ) > 0 and
tλ1/2m

lies into D for t ∈ [t1(λ), t2(λ)]; if such an interval exists for each λ and the
intersection is not void, then s can be any point of the intersection, else increase m.

In Figure 6.1 we have constructed experimentally the level sets of convergence for
iterations (6.1) and (6.4) applied to scalar numbers. Given the tolerance ε = 10−15,
a point x0 of the region [−1, 5] × [−3, 3] of the complex plane has been colored by a
tonality of grey if convergence up to ε occurs in less than 10 steps. Each tonality of grey
corresponds to a different number of iterations needed: the lighter one corresponds to
the points for which convergence up to ε occurs in 9 steps. The black contour encloses
the sets in which the eigenvalues of the matrix preprocessed by Algorithm 3 and 2 lie;



A FAMILY OF RATIONAL ITERATIONS FOR THE MATRIX PTH ROOT 15

Fig. 6.1. Comparison of the level sets of convergence for the Newton method (first row) and
the inverse Newton method (second row) for p = 4 (first column), p = 20 (second column) and
p = 200 (last column). The black contour encloses the regions in which lie the eigenvalues of the
preprocessed matrices to which is applied the iterative step of Algorithms 3 (first row) and 2 (second
row).

observe that in the examples in Figure 6.1 the scalar iteration with an initial value
inside the bordered regions needs at most 5 iterations. The expected number for the
matrix iteration is the same, unless the matrix is nondiagonalizable.

In practice, due to the larger level sets of convergence (see Figure 6.1) Algorithm
3 is likely to obtain the same number of iteration steps as Algorithm 2 with a slightly
milder condition on step 2, which could save a couple of square roots in preprocessing.

From the stable version of Halley’s iteration (5.10) and Corollary 5.4, we obtain
another algorithm.

Algorithm 4 (Schur-Halley algorithm using (5.10)). Given A ∈ Cn×n with no
nonpositive real eigenvalues, an integer p = 2k0q with k0 > 0 and q odd.

1. Compute the Schur decomposition of A = QRQT ;
2. If q = 1 then k1 = k0 else choose k1 > k0 such that there exists a positive

number s such that for each eigenvalue λ of A, sλ1/2k1 ∈ D, where D is the
disk of center 8/5 and radius 1.

3. Compute B = R1/2k1 by taking the square root k1 times; if q = 1, then
X = QBQT , else continue;

4. Compute C = (B/s)1/q by (5.10), X = Q(Cs1/q)2
k1−k0

QT .
The convergence of Algorithm 4 is guaranteed by Corollary 5.4, in fact iteration

(5.10) is applied to a matrix having eigenvalues in the set C>.
Once again, the choice of D is heuristic and it is based on the observation of the

experimental regions of convergence. With this preprocessing the iteration usually
needs 3 steps to converge.

Algorithms 3 and 4 have not the disadvantages of Algorithm 1, described in [6],
i.e., a large number of steps or a possible instability in certain cases. They have the
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same excellent numerical behavior of Algorithm 2, moreover, in most cases, they can
save some square root in preprocessing.

To compare the algorithms, we use the criterion used in [6], considering the relative
residual

ρA(X̃) .=
‖A− X̃p‖

‖X̃‖

∥∥∥∥∥
p−1∑
i=0

(
X̃p−1−i

)T

⊗ X̃i

∥∥∥∥∥
,

where X̃ is the computed matrix and where the norm used is the infinity norm and
the algorithms are stopped when ‖Nk − I‖ < 100nu, where n is the size of A and u
is the machine precision.

Table 6.1
Results for the 5th root of a random nonnormal matrix.

Algorithm 2 Algorithm 3 Algorithm 4
iteration (6.5) iteration (6.2) iteration (5.10)

ρA(X̃) = 3.3e -16 ρA(X̃) = 2.7e -16 ρA(X̃) = 2.8e -16
ρA−1(X̃−1) = 7.4e -17 ρA−1(X̃−1) = 4.2e -16 ρA−1(X̃−1) = 4.7e -16

iter=5, k1 = 3 iter=5, k1 = 2 iter=3, k1 = 2

Table 6.2
Results for the 15th root of a 3-by-3 matrix A with real eigenvalues and condition number

κ2(A) ≈ 1010.

Algorithm 2 Algorithm 3 Algorithm 4
iteration (6.5) iteration (6.2) iteration (5.10)

err = 2.7e -8 err = 2.7e -8 err = 2.7e -8
ρA(X̃) = 5.0e -17 ρA(X̃) = 8.1e -18 ρA(X̃) = 1.5e -17
iter=5, k1 = 5 iter=5, k1 = 4 iter=3, k1 = 4

As first test, it is computed the 5th root of a random nonnormal matrix con-
structed as described in [6] with Algorithms 2, 3 and 4. This example was used in [6]
to show the better behavior of Algorithm 2 with respect to Algorithm 1. In Table 6 we
compare the results in terms of relative residual, number of steps (iter) and number
of square roots in preprocessing (k1).

A second test is made considering a the nonnormal matrix

S =

 −1 −2 2
−4 −6 6
−4 −16 13


whose eigenvalues are {1, 2, 3} and computing the 15th root of A .= S15, which is
formed exactly. The condition number κ2(A) = ‖A‖2‖A−1‖2 of the matrix A is
about 1010. In Table 6 the algorithms are compared in terms of the relative residual
and the relative error of the computed solution X̃, namely err = ‖X̃−S‖/‖S‖, where
the Frobenius norm is used.

Observe that Algorithm 3 gives the same numerical results of Algorithm 2, with
fewer square roots in preprocessing. Algorithm 4 requires in general fewer square
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roots in preprocessing and a minor number of steps since it has cubic convergence,
though the computational cost per step is higher than the other two. An advantage
of Algorithm 4 is that it is structure-preserving.

Fig. 6.2. In black the region E of the proof of Theorem 6.1 for p = 3.

6.1. Proof of Theorem 6.1. It is enough to prove that the set E ∩ {|z| < 1}
belongs to the immediate basin of attraction, in fact the case |z| > 1 is a corollary of
Theorem 2.3 of [15].

In Lemma 2.4 of [15], it is proved that a disk centered at z = 1 and with radius
Rp is contained in the basin of 1, where Rp = 1−sp and sp is the unique real solution
of the equation (2p − 1)sp − 2p sp−1 + 1 = 0 in the interval (0, 1). In Lemma 2.8 of
[15] it is proved that Rp > α0/p, for each p > 1, where α0 > 1.256.

To achieve the proof it is enough to show that the half line forming an angle of
π/(4p) with the real axis meets the circle |z − 1| = Rp in two points z1 and z2 such
that

r1 <
1

p
√

2
< 1 < r2,

where r1 = |z1| and r2 = |z2|. That would imply that the set E (the black set in
Figure 6.2) belongs to the disk |z− 1| 6 Rp and then to the basin of attraction of the
fixed point 1.

The equation that gives the two points of intersection is |reiπ/(4p) − 1| = Rp,
which can be rewritten as

γ(r) .= r2 − 2r cos(π/(4p)) + 1−R2
p = 0.

The function γ(r) is quadratic, to prove that r2 > 1, observe that

γ(1) = 2−R2
p − 2 cos

( π
4p

)
6

1
p2

(
π2

16
− α2

0

)
< 0,

the inequality r1 < 1/ p
√

2 can be written as

cos(π/(4p))−
√

cos2(π/(4p))− 1 +R2
p <

1
p
√

2
,
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which follows from√
cos2(π/(4p))− 1 +R2

p >

√
α2

0 − π2/16
p

> 0 >
log 2
p

> cos(π/(4p))− 1
p
√

2
,

where we have used the following inequalities: cos2(π/(4p))− 1 > −π2/(16p2), R2
p >

α2
0/p

2, 1/ p
√

2 > 1− log(2)/p and cos(π/(4p)) < 1. �
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[18] Slobodan Lakić. On the computation of the matrix kth root. ZAMM Z. Angew. Math. Mech.,
78(3):167–172, 1998.

[19] Curt McMullen. Families of rational maps and iterative root-finding algorithms. Ann. of Math.
(2), 125(3):467–493, 1987.
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